NUMERICAL STUDY OF FLOWS OF A VISCOUS COMPRESSIBLE
GAS AND OF AN EQUILIBRIUM GAS MIXTURE IN A FLAT
NOZZLE IN THE PRESENCE OF STRONG BLOWING
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The problem of the interaction of a viscous supersonic stream in a flat nozzle with a trans-
verse gas jet of the same composition blown through a slot in one wall of the nozzle is
examined. The complete Navier— Stokes equations are used as the initial equations, The
statement of the problem in the case of the absence of blowing coincides with [1]. The con-
ditions at the blowing cut are obtained on the assumption that the flow of the blown jet up to
the blowing cut is described by one-dimensional equations of ideal gasdynamics. The
proposed model of the interaction is generalized to the case of flow of a multicomponent
gas mixture in chemical equilibrium. The exact solutions found in [2] are used as the
boundary conditions at the entrance to the section of the nozzle under consideration, The
results of numerical calculations of the flows of a homogeneous nonreacting gas and of an
equilibrium mixture of gases consisting of four components (Hy, HyO, CO, COy) are given for
different values of the parameters of the main stream and of the blown jet. In the latter
case it is assumed that the effect of thermo- and barodiffusion can be neglected.

1. Much attention has been devoted to the problem of the interaction of a supersonic stream with a
transverse gas jet blowing on it. This can be explained by the importance of the practical problems which
are modeled to one degree or another within the framework of this interaction.

The considerable number of applications together with the wide range of variation of the characteris-
tics of the interacting streams have given rise to a number of approaches to the study of this problem.
These studies have had an experimental nature and have been directed at obtaining similarity laws [3], flow
patterns [41, and approximate methods of solution {5-8].

Let us examine the flow of a viscous multicomponent mixture of gases in a flat expanding channel
(Fig. 1). It is assumed that the velocity at the line of symmetry in the initial cross section ab is supersonic.
The strong blowing of a mixture of gases consisting of the same components as in the main stream is
produced through the slot ddj. The coefficients of viscosity and diffusion and the Prandtl number of the
gas mixture are assumed to depend on the composition of the mixture and the thermodynamic parameters
of the flow.,

The system of equations describing the two-dimensional flows of an m-component mixture of gases
consisting of v chemical elements has the following dimensionless form {23:

the continuity equation (11
Vi{pV)=0 )

the equations of conservation of momentum

1
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the equation of conservation of energy

PIVI)V = — 5 Vp 4 oo [-;—V(HVV) +#AV 4 V(VuV) — VAp — V X (Vu x V)l 1.2)

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 55-63,
July-August, 1974, Original article submitted December 20, 1973,

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

481



. 1
y (4_1)1112 p(vv) z CG mvvp
. a==]1
: e vy LA vy
merr G VOVD) + g5 [— 5 e (TVE +

+pa (V3 — 20V (VV) - 20V (¥ x (V X V)

(1.3)
— 0 X V|~ s ey )V Gehe)
Re Sm (x —1) e are
the equations of diffusion of the chemical elements
2 ng:V (peV + 1) =
a=F
Fig. 1 B=1,2,...,v—1 (1.4)
2 €a=1
the equations of chemical equilibrium -
Kp@=p“H 0 B=1,2,...,m—v
a=} (1"‘5)
= Ve — VaB's a = Zb
=]
The Stefan — Maxwell equations :
ne m 2 ™"
S NEI g VL B2, m—1
—_————— S - == 1 eligaeay - 1. ]
=1, astf pD“B K ‘a 8 ) (a§1 * a1 ‘a B (1.6)
23 =
the equation of state =1
m (1.7)
p=oT 2
2=1

where V, p, p, T, &, and X denote the velocity vector, density, pressure, temperature, and coefficients of
viscosity and thermal conductivity of the gas mixture, respectively; cq, he, Doz, B, and J are the concen-
tration, specific enthalpy, coefficients of binary diffusion, and vector of the diffusional flux density of the
component @; ngy is the number of atoms of element B in component o; vy 4 (Vaﬁu) are the stoichiometric
coefficients of component @ in the B-th direct (reverse) reaction; Kpﬁ is the equilibrium constant of the 8-
th reaction; V is the Hamilton operator , A= v Re, Pr, and Sm are the Reynolds, Prandtl, and Schmidt
numbers; ¥ is the adiabatic index
Co=Cal My, Ju =3/ M,

M, is the molecular weight of component .

In converting to dimensionless variables the characteristic values were taken as xi, uy = Vxp P1, T,
Hy, A, Cpys P1 = p1RTy, and Dy gy, equal to the corresponding values at the line of symmetry in the initial
cross section of the channel (R is the universal gas constant, xy is the abscissa of the initial cross section
and Vy is the component of the velocity vector along the x axis).

The dependences Kpg(T), ha(T), cpalT), KT), A(T), Dug(p, T) close to the system of equations (1.1)
1.7,

In the case of the flow of a homogeneous chemically nonreacting gas the appropriate system of equa-
tions can be obtained from (1.1)-(1.3), (1.7) if the latter one sets

m

decha=h, =0, D=1

a=] a==1

2., An important moment in the statement of the problem of the interaction of two gas streams under
consideration is the formulation of the boundary conditions at the ends of the nozzle section being examined
and at the blowing out.

482



Let us consider the case of the interaction of two homogeneous chemically nonreacting gas streams.
Folliowing [1], as the conditions at the entrance to the nozzle (cross section ab) we will use the exact solu~
tion [9, 10]

u=u*{z), v=0ov¥2., T =7T%2, p=rp*(z 2.1
(z = y/x4; u and v are the components of the velocity vector along the x and y axes) corresponding to the

flow of a viscous compressible gas in a flat nozzle without heat or mass supply and with given values of
the half-angle of the nozzle aperture and the numbers M and Be, ,

At the exit from the nozzle section under consideration (cross section ajby) one can assign the con-
ditions of self-similarity of the flow

Qulor = 8Tior = v = 0 (2.2)
where r = (x* + yz)i/z.

The conditions (2.2), as the numerical calculations of [1] showed, are very "strict" from a computa-
tional point of view since they necessitate an increase in the length of the nozzle section under consideration
with an increase in Re. In the proposed statement of the problem "milder" conditions of the type

Pulor® = P/ = 0%0/01° = 0 2.3)
are used instead of (2.2).

At the walls of the nozzle (except for the blowing out) we assign the conditions of adhesion and non=~
penetration

u=v=0 2.4)
and the condition of the absence of heat exchange through the wall

aT/on = 0 (2.5)
{(n is the normal to the nozzle wall).

In the formulation of the boundary conditions at the blowing cut (cross section dds) we will assume
that the flow of the blown jet up to the nozzle cut inclusively is adiabatic and is described by one-dimen-
sional equations of gasdynamics of a nonviscous ideal gas. Then the parameters of the jet at the blowing
cut satisfy the equations

Mg? = Mgt [ Tg
7ok = (1 +y‘_1Ms2>Ts

§ 2
, %—1 %/ (x-1)
pS* — (1 e MS‘Z)

ps = psRTg

(2.6)

DPs

The subscript S corresponds to the parameters of the jet at the blowing cut; p*s adn T*g are the
stagnation pressure and temperature of the jet; M is the characteristic Mach number of the main stream.
Assuming that the velocity component u of the main stream at the blowing cut is zero, we obtain from the
stationary continuity equation

(p9)s = (p2)o 2.7)
{the subscript 0 pertains to the parameters of the main stream at the blowing cut).

Equations (2.6) and (2.7) with the assigned values of p*gand T*g make it possible to determine all
the characteristics of the jet, Vg, Tg, and pg, i.e., the necessary boundary conditions at the blowing cut,
as functions of the parameter (pv)y. Thus, within the framework of the proposed model (pv)( is the deter-
mining parameter of the interaction of the main stream and the blowing jet. The value of this parameter
is chosen from the condition of satisfying the equation of conservation of momentum along the y axis at
each point of the blowing cut. Here is is assumed that in the vicinity of the blowing cut one can neglect
the effect of viscous forces.

3. In setting up the boundary conditions in the case of the interaction of two chemically reacting gas
streams we willstartfrom the model of the interaction of nonreacting homogeneous gas streams,
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At the entrance to the nozzle the profiles u* (z), T* (z), p* (z), c*4 (z), are given corresponding to
the exact solution of [2] for fixed values of the nozzle aperture angle, the numbers M and Re, the concen-
trations of the chemical elements, and the temperature at the line of symmetry in the initial cross section,
The conditions (2.4) are carried over to this case without change.

In the case of noncatalytic, thermally insulated nozzle walls one can write the conditions

T /on=0c; /n=0, a=1,2,...,m
At the exit from the nozzle one must add the conditions for the concentrations
or O, /Or=0, a=1,2,...,m
Bcy /82 =0, a=1,2,...,m

to the conditions (2.2) or (2.3).

To obtain the conditions at the blowing cut we assume as before that the blowing is accomplished
along the normal to the plane of symmetry of the nozzle and that the flow of the hlown equilibrium gas
mixture from infinity up to the blowing cut is isentropic and is described by one-dimensional equations of
gasdynamics of a nonviscous ideal gas with allowance for the equilibrium chemical reactions. The latter
can be represented in the form

m 22 m
2 caqhaq + '—;_ = 2 caqohaqo

o=1 . =1

(pv)q = (p?)q

o= 3 [ g / 3! 62| = s

a=1 a=}

Py = pRT, 2 Cuq (3.1)

a=1

m m
D) Noafaq = D) Mpafager B=1,2,...,v—1

a==1 a=1
m
2 Cag=1
a=1
m
K= pe | 20®
a=1

b:v;g—v;g, a = Zb

(8 qq is the entropy of the component @ at p =1 atm, the subscript q corresponds to the parameters of the
jet at the blowing cut, the subscript q0 corresponds to the stagnation parameters of the jet, and the sub-
script 0 corresponds to the parameters of the main stream at the blowing cut).

The system of equations (3.1) with assigned values of the stagnation parameters of the jet is mono-
parametric. Its solution, i.e., the values of vy, Pg> Tq, Pq: Coy (¢ =1, 2, ..., m), is uniquely determined
if the flow rate of the jet (pv) is known. The latter, as in Sec. 2, is found from the equation of conservation
of momentum (1.2) in projection onto the normal to the plane of symmetry of the nozzie.

4. For the numerical solution of the stated problem we used the explicit method of determination
[111 with certain modifications [12, 13] making it possible to decrease the determination time and to weaken
the condition of stability, reducing it to the well-known Courant— Friedrichs — Levi condition [14].

In [1] it was noted that the difference system of [11] loses stability in the case when a density dis-
turbance occurs in regions of low stream velocities. The vicinity of the blowing cut is such a region in the
problem under consideration. Calculations of flows with blowing conducted with the use of the standard
system [11] have confirmed the correctness of this observation. To assume the stablilty of the difference
system in a wide range of variation of the parameter (ov); an additional "viscous" term of the type

Pivy — 2035 + Pilyy Pijva — 2% + Phyy
C(W'ﬁ"l—T o | (4.1)

was introduced into the difference equation approximating the continuity equation, where C is a constant,

pijl'l = p(nT, ihy, jhe); hy = &%, hy = Ay, and 7 = At are the steps of the space—time grid.
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The choice of C =0 (}12) (h = min (hy, hy)) proved to be sufficient to obtain monotonic density profiles
in the blowing zone.

As a result of the methodical calculations conducted it was established that one can make a stable
calculation with T = O(h) if one assumes that the stagnation parameters of the blown jet are brought to the
required values through the linear law

Peo® = f9g — (1 — ) @o*, 0t (4.2)

where <P*q0 is the current value of the retardation parameter of the jet, ¢qo is the required value of this
parameter, and @™ is the value of the corresponding parameters of the main stream at points of the block-
ing cut in the absence of blowing,

If one is limited to the consideration of equimolecular reactions then a = 0 in Eqgs. (1.5). In this case
for the solution of the equations of the diffusional part of the problem [Egs. (1.3)-(1.5)] one can use the
procedure of [15], consisting in the following, We differentiate Eq. (1.5) logarithmically with respect to
time

71t
dln K 5 8T b 0t
p3 _ @
aT et AT (4.3)
=1
p=1,2,...,m—v

Then we write Eq. (1.4), introducing the nonstationary term and differentiating the latter equation with
respect to time, in the form

m oo, m
2 ’lﬁz'a_t = Z HAga v (P%V -+ Ja)
a=1

a==1

3=1,2,...,v—1
3[1

2 M. —=2=0

a=lL

(4.4)

m

The system of equations (1.3) (with the addition of the nonstationary term), {4.3), (4.4) is linear
relative to the derivatives 8T/, 8¢y /0t (o =1, 2, ..., m) and permits the determination of these derivatives
at each point of the region of flow under consideration.

A similar procedure can be used to calculate the parameters of the blown jet at the blowing cut. With
allowance for (4.2) the system of equations obtained from (3.1) by formal differentiation with respect to
time makes it possible to find the derivatives 8caq/9t, aTq/Bt, Bpq /o, Spq/at, and 8vq/3t as functions of
8(pv),/8t. The latter value is found from the nonstationary equation of conservation of momentum along y.

The density ot the walls of the nozzle (except for the blowing cut) is determined from the nonstationary
continuity equation described at the boundary points with a second-order approximation with respect to the
spatial variables. The difference equations, approximating with second order the corresponding differential
conditions of the noncatalytic and thermally nonconducting nature of the nozzle walls, permit the deter-
mination of the temperature and concentration of the components at the nozzle wall,

The conditions (2.3) in the difference representation have the form
NP = i — 3 (TR — f-)
(i = N corresponds to the exit cross section of the nozzle).

The functions u*(z), v¥(z), T*(z), p*(z)x‘i, and ¢*{z) corresponding to the exact solution of {9, 10]
{a chemically nonreacting stream) or to the exact solution of {2] (with allowance for equilibrium chemical
reactions) are taken as the initial conditions.

In order to test the correctness of the formulation of the boundary conditions and the accuracy of the
calculations on a grid with hy = hy = 0.1 control calculations were conducted for the case of M = 1,5, Re =
400, » =1,22, Att =6 the maximum deviation of the stream parameters from the values corresponding to
an exact solution was observed at the nozzle walls and was 2% for the density and 1% for the other values.
An estimate of the effect of the boundary conditions at the exit from the nozzle was obtained from a com-
parison of the results of calculations for a short (xN = 2.9) and a long (xy = 3.6) nozzle with M = 2, Re =
100, and p*g/p; = 1.1 (p is the pressure at the line of symmetry of the nozzle at x = 1,9), The blowing
was carried out through a slitat 1,9 = x = 2,1, The initial cross section corresponded to x = 1. The
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comparison showed that the maximum difference in the parameters occurs at x=2.9 and does not exceed
1% at the walls of the nozzle and 0.5% at the line of symmetry.

A test of how the laws of conservation are satisfied, conducted for the variant corresponding to the
greatest blowing intensity (M = 3, Re = 135, pg */pl = 1,62) showed that the error does not exceed 3%.

5. Some results of the numerical calculations are presented in Figs, 2-7. Figure 2 illustrates the
pressure distribution along the length of the nozzle at different cross sections y = const (the numbers of
the curves correspond to the cross sections y; = jAy —yy, yyw = x tg0y,) for the case of M = 3, Re = 135,
ps*/p; = 1.62, 6, = 24°6', and the absence of Chemical reactions.

The positions of the shock waves developing during the interaction of nonreacting streams are shown
in Fig. 3 for the case of M = 3, Re = 135, and different values of the parameter ps*/pl. Curve 1 corre-
sponds to pg*/py = 1.62, curve 2 to pg ¥/p; = 1.32, and curve 3 to pg ¥/p; = 1.125.

Distributions of the parameter p, = pg™po {ps is the pressure at the nozzle wall during the blowing
of a chemically nonreacting jet and pg 1s the same value in a flow without blowing) are presented in Fig, 4
for the case of M = 3, Re = 135, and different values of ps*p;. The respective curve numbers and values
of this parameter are the same as in Fig. 3.

Some results of numerical calculations of the interaction of two streams of equilibrium gas mixtures
consisting of four components, H,O, Hy, CO, and COs, are presented in Figs. 5-7. It was assumed that
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equilibrium chemical reactions take place in the mixture which are describedby the following total reaction:
H,; + COy =2 CO + H,0

the equilibrium constant of which is connected with the concentrations of the reacting components by the
equation
Kp= (2,8y) / (248,)

(8, = Cu,0, B = Bco, C3 = Bco, 0y = C,)

The characteristic Schmidt number at the line of symmetry of the nozzle was taken as unity. The
coefficient of viscosity of the gas mixture was calculated from the equation of {16] and the Prandtl number
of the mixture from the equation

Pr = ¢cp / (1.204c, + 1.47)

The thermodynamic parameters of the mixture were found with the use of the equations of [17],

Profiles of the pressure at different cross sections x = const are shown in Fig, 5 (the numbers of the
curves correspond to the cross sections x; = i&x + 1) for the case of M = 2, Re = 100, T§ = 1700°K, ¢, =
0.0066, & = 0.0235, T3 = 0.0078 (the concentrations of the components at the initial cross section of the
nozzle) and the blowing of a gas mixture with a large water vapor content (ci = 0.9). In this case the
stagnation parameters of the jet are ¢p = 0.05229, cc = 0.00229, cH = 0.112 (e, e, ey are the reduced
concentrations of the corresponding chemical elements), qu = 1,33, PqO/pl =1,36, and Hy = 13,161 (Hy
is the enthalpy of the mixture).

Distributions of the concentrations ¢y (solid lines) and ¢y (dashed lines) at different cross sections x =
const are presented in Fig, 6 (the respective curve numbers and cross sections are the same as in Fig, 5)
for the same values of the parameters of the main stream and for values of the parameters of the blown jet
equal to cz = 0.88, ¢o = 0.0367, ¢ = 0.003319, ey = 000722, T = 1,33, pyo/py = 1.24, Hy =~4.87,

The calorific effect of the chemical reactions can be followed in Fig. 7, where the profiles of T /8x
at the blowing cut are presented. Curve 1 corresponds to the case of the blowing of a gas mixture with
cg = 0.88 and pqo/pl = 1,24; curve 2 corresponds to blowing with ¢; = 0.9 and pqo/pl = 1,34; curve 3 corre-
sponds to blowing with pS*/p; = 1.3 (without chemical reactions).

It is seen that the blowing of a mixture with an enthalpy greater than the enthalpy of the main stream
causes an additional temperature increase because of the chemical reactions. In blowing a mixture with a
large (in absolute value) negative enthalpy the temperature in the stream first drops because of the endo-
thermic reactions and then increases beacuse the dissipative effect becomes dominant downstream.
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